有一家人决定搬进城里,于是去找房子。 全家三口,夫妻两个和一个5岁的孩子。他们跑了一天,直到傍晚,才好不容易看到一张公寓出租的广告。他们赶紧跑去,房子出乎意料的好。于是,就前去敲门询问。
这时,温和的房东出来,对这三位客人从上到下地打量了一番。丈夫豉起勇气问道:“这房屋出租吗?” 房东遗憾地说:“啊,实在对不起,我们公寓不招有孩子的住户。” 丈夫和妻子听了,一时不知如何是好,于是,他们默默地走开 了。
那5岁的孩子,把事情的经过从头至尾都看在眼里。那可爱的心灵在想:真的就没办法了? 他那红叶般的小手,又去敲房东的大门。这时,丈夫和妻子已走出5米来远,都回头望着。
门开了,房东又出来了。这孩子精神抖擞地说:……
房东听了之后,高声笑了起来,决定把房子租给他们住。
问:这位5岁的小孩子说了什么话,终于说服了房东?
「2、篮球赛」
在某次篮球比赛中,A组的甲队与乙队正在进行一场关键性比赛。对甲队来说,需要嬴乙队6分,才能在小组出线。现在离终场只有6秒钟了,但甲队只蠃了2分。要想在6
秒钟内再赢乙队4分,显然是不可能的了。
这时,如果你是教练,你肯定不会甘心认输,如果允许你有一次叫停机会,你将给场上的队员出个什么主意,才有可能蠃乙队6分?
「3、分油问题」
有24斤油,今只有盛5斤、11斤和13斤的容器各一个,如何才能将油分成三等份?
「4、第十三号大街」
史密斯住在第十三号大街,这条大街上的房子的编号是从13号到1300号。琼斯想知道史密斯所住的房子的号码。
琼斯问道:它小于500吗? 史密斯作了答复,但他讲了谎话。
琼斯问道:它是个平方数吗? 史密斯作了答复,但没有说真话。
琼斯问道:它是个立方数吗? 史密斯回答了并讲了真话。
琼斯说道:如果我知道第二位数是否是1,我就能告诉你那所房子的号码。
史密斯告诉了他第二位数是否是1,琼斯也讲了他所认为的号码。
但是,琼斯说错了。
史密斯住的房子是几号?
「5.不同部落间的通婚」
故事讲的是许多年前欠完美岛上的一件婚事。一个普卡部落人 (总讲真话的)同一个沃汰沃巴部落人(从不讲真话的)结婚。婚后,他们生了一个儿子。这个孩子长大后当然具有西利撤拉部落的性格(真话、假话或假话、真话交替着讲)。
这个婚姻是那么美满,以致夫妻双方在许多年中都受到了对方性格的影响。讲这个故事的时候,普卡部落的人已习惯于每讲三句真话 就讲一句假话,而沃汰沃巴部落的人,则己习惯于每讲三句假话就要 讲一句真话。
这一对家长同他们的儿子每人都有个部落号,号码各不相同。他们的名字分别叫塞西尔、伊夫琳、西德尼 (这些名字在这个岛上男女通用)。
三个人各说了四句话,但这是不记名的谈话,还有待我们来推断各组话是由谁讲的 (我们想,前普卡当然是讲一句假话、三句真话,而前沃汰沃巴则是讲一句真话、三句假话)。
他们讲的话如下:
A 1)塞西尔的号码是三人中最大的。(2)我过去是个普卡。(3)B是我的妻子。(4)我的号码比B的大22.
B 1)A是我的儿子。(2)我的名字是塞西尔。(3)C的号码是54或78或81.(4)C过去是个沃汰沃巴。
C 1)伊夫琳的号码比西德尼的大10.(2)A是我的父亲。(3)A的号码是66或68或103.(4) B过去是个普卡。
找出A、B、C三个人中谁是父亲、谁是母亲、谁是儿子,他们各自的名字以及他们的部落号。
答案
1,孩子自己去租,说:“我没孩子,只有父母”
2,让对方进个2分球,打加时,争取赢他们6分。
3,先把13斤的倒满,然后用13斤的倒满5斤,这时13斤中就有8斤,也就是1/3了,将这些到如11斤容器中。
再用5斤和剩余的倒满13斤的,重新来一次,就完成了。
4,64号,首先想最简单的处理办法,这里一共有5个条件,能作为初步判断的只有前三个,那么前三个中最简单的就是第三个立方数的条件,假设为真,得出1~10的立方数,其中既符合平
方数的也符合立方数的只有64和512,若大于500则只有512,小于500则64,但512中有1,若通过这个判断是512,那么就不会说错,所 以初步判断是64.我判断既符合平方数又符合立方数的原因是如果只符合立方数或平方数其中一项,则会因为符合条件的选项太多而推测不出来,因此估计为两项 同时符合,就没有考虑太多了。
5,这个……题目看晕了,高手留下答案。
濮阳人才网提示您:
用人单位以任何名义向应聘者收取费用都属于违法行为(如押金、报名费、资料费、代收体检费、代刷淘宝信誉等等),请提高警惕!